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Abstract
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for linear and planar acoustic arrays. 'To provide a simple miodel for
calculation and inversion of tht, acoustic Impedance latrices, spherical
radiators are chosen. Considerations of total radiated beamn power
are addressed. The principal effect of element interaction on array
performaiice found is in the effective impedance of individual radiators
in the array.
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1 INTRODUCTION

In this note we address some questions related to acoustic coupling be-

tween transmitting elements in an acoustic array. We shall be primarily

concerned with elements of characteristic size a that are small compared

with the acoustic wavelength A:

a < A. (1-1)

We shall also suppose that the array is operated in a linear acoustic regime.
This will be interpreted as implying that the acoustic pressure p(a) at the

transducer is less than Pcav, that at which cavitation occurs:

p(a) < pcav. (1 -2)

The array is assumed to have N, radiators with phase centers at locations

x1(i = 1, ... NT) in the neighborhood of the origin of a rectangular coordi-

nate system. Taking advantage of condition Equation (1-1) we compromise
slightly on generality by assuming spherical radiators of radius a that are

driven in a spherically symmetric mode. Then the acoustic pressure at a
distance Ri from the ith element is

pi(r) = p,(a)(a/R)eik(R,- a), (1 - 3)

where

Ri = r - xi.

Since we have assumed a linear system, the total acoustic pressure at r is

Nr

p(r) Zpi( ). (1-.)
i=l

In the far field of the array we cani write this as

p(r) - 1)o(a/l?) kR D(i), (1 - 5)

where, to within an unimportant pihase factor,

ID( -) _=_ E(p,(a)/ Ik (, -6)
z=l



and, say,
Po Ip(a)I N'. (1 -7)

The maximum radiated beam power will occur in a given direction r when
the phases of the pi(a) are adjusted so that

D(r) = N,.

In this case the maximum radiated power/unit solid angle is

Pbeam = r2lpl1/(2pc) (1-8)
a 2 p2 2

[ttere p ; 1000 kg/m 3 and c ; 1500 m/s is the speed of sound.]

The total radiated power is

Prad = jr(r)12 r2dQ, (1 -9)
2pc

where the integral is ove all solid anglcs Q' . We obtain

47 a' N '

Prad = a i p,(a) 1 (1-10)2pc fi=1

p(a)p(a)sin[kx -x ]

Of special interest is a linear or planar array for which the radiated beam
is "broadside," or r 0 x, = 0. Then, if maximum beam power is desired the
driving phases will be equal, so

47,-a 2  N,Prad E 2pi (a) I

+ E Ii (a)p 1, (a)I sin[kjx , - x ] }

1961 kIxi - x,

\\hen high b eam power is the ojecti ye, the second term in L'qnation

I- 10) is not of great significance (see Section 2) and we have

4wrca 2

'ral - E 1P1 (a)I' (I-12)
2pc

< 7W



For purposes of illustration, we shall take

P2cav/(2pc) = 13KW/m 2 , (1 -13)

so

Prad 74a2 Nx[13KIW/m 2 ] (1 - 14)

Returning to Equation (1-8), we conclude that

Pbeam -< a2Ngx[13KW/M2 ]. (1 - 15)

The bounds in Equations (1-12) and (1-15) on the total radiated power

[see the clarification in Section 21 and on the beam power/steradian appear to
be fundamental for simple arrays operating in a linear regime. The quadratic

dependence on element radius indicates the price which is paid in total radi-
ated energy in exchange for the price saved with small radiators.

Our argument does not bound radiators working in a nonlinear regime or

radiators placed near reflectors, baffles, etc.

In Section 2 we examine the role of the second term in Equations (1-10)
and (1-Il). In Section 3 we investigate the performance of an array when

close acoustic coupling between radiating elemeniLs obtains.

I nu u ilulln lm m~uunnmmu1



2 THE TOTAL RADIATED POWER

In this Section we consider the effect of element displacement in changing
the total radiated power in an array. For a linear or planar array with
broadside steering we can replace Equation (1-11) by

1+ I~ sin[k 1xi I- xj( ' (2 -1)

dropping multiplicative factors.

First we consider a linear array with A/2 element spacing. Then P' = 1.
Evidently, we can maximize Equation (2-1) by setting all the xi equal. Then
P' = Nr, but we have no beam forming! Various more restrictive algorithms
have been tried, none of which increase beam power [consistent with Equation
(1-8)]. We illustrate this for a 10 element array and a simple algorithm that

holds fixed the first and last elements at positions 0 and 4.5 (we shall scale
all lengths in units of A/2). The remaining 8 elements are sequentially moved
between neighbors to maximize P', but constrained so no two elements can
be closer than 1/8. Starting with an element spacing of 1/2 and P' = 1, the

algorithm converged in a few iterations to the spacing shown in Figure 1 and

P = 2.57. (2 - 2)

The resulting beam pattern is shown in Figure 2. The extra radiated energy

is fed into sidelobes, as might have been anticipated from Equation (1-8).

As a second example we consider a square array of 5 rows, each having

5 elements. The spacing of rows and elements is 1/2 (i.e. A/2). For this 25

element array,

P' = 1.01. (2 -3)

With sequential moving of elements between neighbors and rows between

rows (holding boundaries fixed and )ermitting no elements or rows to be
closer than 1/8) we are led to the element positions shown in Figure 3 and

P' = .5.(2 - .1)

Again, this extra radiated ('nergy Ias gone into si(elobes ratiher than

)ea p power.

5



Mean Spacing = 1/2 Lambda
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Figure 1 Element spacing for a 10 element linear array to maximize the radiated power (2.1).
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Figure 2 Beam pattern for the array thown in Figure (1).
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Planar Array Element Positions Gain = 4.45

Mean Spacing = 1/2 Lambda

Figure 3 Element spacing to maximize (2. 1) for a 25 element square array.
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3 ACOUSTIC COUPLING WITHIN AN AR-
RAY

In this Section we look in some detail at the beam forming mechanism
for our simple model of Nr identical spherical radiators in a linear or planar
array. The radius of a radiator is a + C, where

w, the surface velocity (3 - 1)

an~d

IC< a.
We also assume simple harmonic radiation:

w = V ewt. (3 -2)

Then i he acoustic pressure at the radiator surface is

p(a) = Zuy (3 - 3)

wIic e

Z = p ckal(ka + i) (3-4)

is the acoustic impedance. In obtaining Equation (3-3) we have used the

relation

Op/Or = iwpw

and lquation (1-3).

For the array of N, elements the average pressure at the surface of element

I is
Nr

), (,a) E Z 1,J, (3 -5,)
j=i

wvhere
= -6) -3 -

tlhe aw('rage pressilire in F(plation (3-5) is defr,'ld as

/) (r))d (3 - 7)

II~~~~~~~ ~ ~~~~~~~ I 1 2 llllII ll N IIIIIIl I~m n ~



whlere the integration ext en Is over thle sphiericalI elemient surface. Usin~g
Equat ions (1I-3),(3-3), aid( (3-7) we obtainl

Z =Z---a ( ik?,) -a) sil ka (3-S

u, 3 ka

We nlote at t ills point that, the rela tioll L(uat io-i (3-5) neglects scattering
of radli atio mu thle radliato(rs. Tis scatterinig is (lepe-ndent. oil thle specific
array geomietry anld Is expected to be small for small radIiators. For thle

sphlere i and radiation fromn J we have [see M . Juiiger and D. Feit , Sound,
St ructutres and Their Interact ions. MIT Press, 1986]

pscattered red (ka ) 2 (a/J? ), (3 - 9)
p radiated

Atall\, rate,. We shall neglect sound scattering within the array.

Thie equlatioiis for driving the array surface are assumed to have the forml

AMi + a w, = i- 1),(a). 0: - 10)

Here .1tI is1 a iiila., arid o is a damping constant characterizing thle radiators,

iti(1

Oil so bst it utia ug Equa tion (3-5) inmt o Equation (3- 10) anid remiovi ng tHie I i i(i

dlepend~enit factors, we obt a in

[-i11 + 0 + Z]1 V -= f, zljI (:I- 11)
J(tO

Now, lie 1w ( Z) represenits a miass of water anid thle I?( ( z7) rad iat ion diamiiping.

.,o we mar write

- IJm (Z ) .1l -- (1-12)

-(ka)" +1

lb ( Z)

IIIi.S. we call re-write FAqtiatioii (3-11I as

-,~' o, +~ I j 1.( 3

10I



Here

M, = M+M (3-14)

a, = a +w(ka)Mw

= WIV + (ka)M,,]
47rQ

and we have introduced the "Q" of the radiator:

Mw
Q =-. (3-15)

4 ra

The pressure at great distances from the array is

p(r) = Z ()Zexp[z'k(R, - a)] V14. (3 -16)

It is convenient to write

fi = if,[e a (3-17)

1/;1

To steer a beam in the horizontal direction (from broadside) 0, we set

c = kxisinO,. (3 - 18)

The power input to the array is (for T < w- 1)

-n T o {0 ZJF'w} dt (3-19)

= iqllf Jcos(a , - ci)/2

and the total power radiated is

_wMl,,(ka) 2. (-20)
grad 2 iv, (3

2 i=l

The radiated power in the beam/unit solid angle is obtained using Equations

(1-5) and (3-16)

lI'eam - 2j(p) F (3 - 21 )

I I



For an array for which acoustic coupling can be neglected we use Equation

(3-1S) and set 1'jj = 1'j, al. Then from Equation (3-13) we find

f =[ M + 0]Vo C i(. (3 -22)

These driving forces, with tie phases defined by Equation (3-18), will be used

as "standard" in Equation (3-13) when we are interested in the coupling.

For numerical illustration we shall consider two arrays. The first is an

array of 3 rows each having 7 elements in a horizontal line. The second array

has 5 rows each having 5 elements in a horizontal line. Half wavelength

spacing is assumed in both arrays. We shall further take

Q = 0.2, w = .11, and w = 628. (3 -23)

Vith Equation (3-22) as the specified driving force, we can solve the coupled

equations, Equation (3-13) for the element surface velocities V . The far

field pressure is finally obtained from Equation (3-16). We emphasize that

for all calculations shown here the driving forces are obtained from Equation

(3-22) with the phases set by Equation (3-18).

We first consider radiation from the 7 x 3 element array when the elements

are uncoupled [i.e., Zjj = 0 for i : j in Equation (3-2:3)]. For broadside

steering (i.e. 0, = 0) the radiated intensity as a function of observation angle

0 (in the horizontal plane and measured from 0, is shown in Figure '1. The

intensity as shown is

1(0) = 10log(ID'/A"), (3- 21)

where D is given by (1-6). In Figures 5 through 8 we show the radiated

intensity obtained from coupled elements using Equation (3-13). These are

shown for different radiator scaled sizes:

(Ila = la/A. (3 - 25)

In Figures 9 and 10 we show the radiated intensity for 0, 300.

In the next series of figirres, we show the correspondli g radiated power

from the 5 x ) array.

In looking at these fig irs, we not(' thal increasing the couplirg st rerrgth

(i.e., the elnreitl ra ,lls ,,) rcd1,,,'e th, lw ( ,'t i\ ,e a, stir c n Illjeclallce a ,d

I I | | |



Acoustic Array Intensity 7x3 Elements: Uncoupled

10

0

-10

.0

_ -20

-30

-40

Steering Angle = 0 degrees

-50 
1 1

-30 -15 0 15 30

Observation Angle (degrees)

Figure 4 The radiated power (3.24) for the 7x3 array as a function of horizontal angle when the
steering angle Os= 0.
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Acoustic Array Intensity 7x3 Elements. Coupled

101

0

10

~ 20

-30

Steering Angle =0 degrees

-- 30 -15 0 15 30

Observation Angle (degrees)

Figure 5 The 7x3 array radiated power for coupled elements. 0.=0, and an element diameter of 0.38.



Acoustic Array Intensity 7x3 Elements: Coupled

10

dia 0.64

0

-10

~-20

-30

-40

StenngAnge 0 degrees

-530 -1t5 0 15 30
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Figure 6 The radiated power, as in Figure (5), but for an element diameter 0.64.
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Acoustic Array Intensity 7x3 Elements: Coupled

10

dia = 0.89

-0

-30

-50

Steering Anl D 0 degrees

-30 -15 0 15 30

Observation Angle (degrees)

Figure 7 The radiated power, as in Figure (5), but for an element diameter 0.89.
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Acoustic Array Intensity 7x3 Elements: Coupled

10

dia 0.96

0

-10

_ -20

*30

-40

Steering Angle = 0 degrees

-501 1
-30 -15 15 30

Observation Angle (degrees)

Figure 8 The radiated power, as in Figure (5), but for an element diameter 0.96.
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Acoustic Array Intensity 7x3 Elements: Uncoupled

10

0

-10 - __ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _

-30

-40

Steering Angle = 30 degrees

_ _ _ _ _ _I

-50
-30 .15 0 15 30

Observation Angle (degrees)

Figure 9 The radiated power, as in Figure (4), but for Os =300.



Acoustic Array Intensity 7x3 Elements: Coupled

10

dia 0. 38

0-

-10

_-20

-30

-40

Steering Angle =30 degrees

-530 -15 0 15 30
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Figure 10 The radiated power, as in Figure (5), but for 0S = 3OC.
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Acoustic Array Intensity 5x5 Elements: Uncoupled

10

0

-10

-20

-30

Steering Angle = 0 degrees

-40 1 1 1
-30 -15 0 15 30

Observation Angle (degrees)

Figure 11 The radiated power (3.24) for the 5x5 array as a function of horizontal angle when the
steering angle Os=C and the elements are uncoupled.
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Acoustic Array Intensity 5x5 Elements: Coupled

10 I 1

dia = 0.38

0

-10

C
_ -20

-30

-40

Steering Angle = 0 degrees

-50_
-30 -15 0 15 30

Observation Angle (degrees)

Figure 12 The 5x5 array radiated power for coupled elements, Os =0, and an element diameter of 0.38.
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Acoustic Array Intensity 5x5 Elements Coupled
10 I

dia = 0.64

-10

E -20

-30

-40

Steering Angle = 0 degrees

.50
-30 -15 0 15 30

Observation Angle (degrees)

Figure 13 The radiated power, as in Figure (12), but for an element diameter 0.64.
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Acoustic Array Intensity 5x5 Elements: Coupled

10

0i 0 89_

.0

30

~40

Steering Angle =0 degrees

50 I11
-30 -15 0 15 30

Observation Angle (degrees)

Figure 14 The radiated power, as in Figure (12), but for an element diameter 0.89.
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Acoustic Array Intensity 5x5 Elements: Coupled
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dia 096

0
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\
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c -20
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-50
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Figure 15 The radiated power, as in Figure (12), but for an element diameter 0.96.
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Acoustic Array Intensity 5x5 Elemnents Uncoupled
10

0

-10

-20

-30

Steering Angle =30 degrees

___40_ __ _ __ _ 1__1_1__------___

-30 -15 0 15 30
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Figure 16 The radiated power, as in Figure (11), but for O s=3'
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Acoustic Array Intensity 5x5 Elements: Coupled

dia =0.38

0

-10

-o

30

-40

Steering Angle = 30 degrees

-30 -15 0 15 30

Observation Angle (degrees)

Figure 17 The radiated power, as in Figure (12), but for Os =30f.
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Acoustic Array Intensity 5x5 Elements: Coupled

10

dia = 0.96
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Figure 18 The radiated power, as in Figure (15), but for Os = 30.
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Acoustic Array Intensity 5x5 Elements Coupled

10
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Figure 19 The largest element excitation (3.26), normalized to that for the uncoupled system,

is shown as a function of element diameter.

2 S



25

0

0
n-

E
-25

0

0

E

1 0 -_ _ _ _ _ _ _ _ _ _ _ _ _ _

05-
00 0,5 1.0

Diameter

Figure 20 The beam power is shown as a function of element diameter.
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increases the radiated tpower (holding fixed the driving forces). This is illus-
trated iII Figure 19 w'h'ire tle largest element excitation

11 [IlliaXmax (3 -26)

i's shown ias a frlriction of Ihe element diameter. The corresponding beam

power is shown ill Figure 20. lerhiaps the most obvious effect of beam cou-
pling is to reduce tlie m ini[num radiated power between beam lobes-a not

surprising result, as this results from a delicate balance of phases.

For a linear array. the effects of element coupling can in principle be com-

pnsita , for ky adlusting the driving forces f,. The practical consequences

of coupling for bea forinig do not seem to be very great. however.

30
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